Catalog of genetic variants within mature microRNA seed regions in chicken

نویسندگان

  • Minja Zorc
  • Sandra Omejec
  • Dusan Tercic
  • Antonija Holcman
  • Peter Dovc
  • Tanja Kunej
چکیده

MicroRNA (miRNA) is a class of noncoding RNA important in posttranscriptional regulation of target genes. The regulation mechanism requires complementarity between target mRNA and the miRNA region responsible for their recognition and binding, also called the seed region. It has been estimated that each miRNA targets approximately 200 genes and genetic variability of miRNA genes has been associated with phenotypic variation and disease susceptibility in humans, livestock species, and model organisms. Polymorphisms in miRNA genes especially within the seed region could therefore represent biomarkers for phenotypic traits important in livestock animals. Using the updated Version 5.0 of our previously developed bioinformatics tool miRNA SNiPer we assembled polymorphic miRNA genes in chicken. Out of 740 miRNA genes 263 were polymorphic, among them 77 had SNPs located within the mature region, and 29 of them within the miRNA seed region. Because several polymorphisms in databases result from sequencing errors, we performed experimental validation of polymorphisms located within 4 selected miRNA genes in chicken (gga-mir-1614, -1644, -1648, and -1657). We confirmed the presence of nine polymorphisms and identified 3 additional novel polymorphisms within primary miRNA regions in chicken representing 3 layer-type breeds, one layer-type hybrid, and one meat-type intercrossed population. The developed catalog of mir-SNPs in chicken can serve researchers as a starting point for association studies dealing with poultry production traits and designing functional experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Common Genetic Variants in miR-1206 (8q24.2) and miR-612 (11q13.3) Affect Biogenesis of Mature miRNA Forms

Cancer genome-wide association studies (GWAS) have identified many common genetic markers located in non-coding regions of the genome. Two notable examples are the multi-cancer susceptibility regions, 8q24.2 and 11q13.3. Since these GWAS signals localize to gene-poor regions, we investigated genetic variants within pre-microRNA (pre-miRNA) transcripts as a possible link between the GWAS finding...

متن کامل

Editorial: The Post-Exome Era

The Iranian Rehabilitation Journal (IRJ) invites research papers on the genetic basis of single gene and complex disorders. This vastly dynamic branch of science will complement the multidisciplinary wealth of expertise in the fields of social welfare and rehabilitation. The past few years have witnessed outstanding research projects on the genetic causes of numerous debilitating disorders, suc...

متن کامل

Effects of genetic variations on microRNA: target interactions

Genetic variations within microRNA (miRNA) binding sites can affect miRNA-mediated gene regulation, which may lead to phenotypes and diseases. We perform a transcriptome-scale analysis of genetic variants and miRNA:target interactions identified by CLASH. This analysis reveals that rare variants tend to reside in CDSs, whereas common variants tend to reside in the 3' UTRs. miRNA binding sites a...

متن کامل

Genetic Variability of MicroRNA Genes in 15 Animal Species

MicroRNAs (miRNA) are a class of non-coding RNAs important in posttranscriptional regulation of target genes. Previous studies have proven that genetic variability of miRNA genes (miR-SNP) has an impact on phenotypic variation and disease susceptibility in human, mice and some livestock species. MicroRNA gene polymorphisms could therefore represent biomarkers for phenotypic traits also in other...

متن کامل

miRVaS: a tool to predict the impact of genetic variants on miRNAs

Genetic variants in or near miRNA genes can have profound effects on miRNA expression and targeting. As user-friendly software for the impact prediction of miRNA variants on a large scale is still lacking, we created a tool called miRVaS. miRVaS automates this prediction by annotating the location of the variant relative to functional regions within the miRNA hairpin (seed, mature, loop, hairpi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 94  شماره 

صفحات  -

تاریخ انتشار 2015